Sidney Crosby of the Pittsburgh Penguins walks off the ice after losing to the Washington Capitals in the NHL's Winter Classic hockey game at Heinz Field in Pittsburgh on January 1, 2011. // Sidney Crosby, Pittsburgh Penguins, Winter Classic(REUTERS-Dave Denoma)

Sidney Crosby of the Pittsburgh Penguins walks off the ice after losing to the Washington Capitals in the NHL's Winter Classic hockey game at Heinz Field in Pittsburgh on January 1, 2011.

Inside a white cement-block science lab at the University of Ottawa, two young researchers cover a beige crash-test dummy head with a black nylon stocking. It's supposed to mimic the tousled hair of Pittsburgh Penguins superstar Sidney Crosby, who's been knocked out of the game since early January because of two massive, back-to-back blows to the head. Here, at the elite Neurotrauma Impact Science Laboratory, researchers led by Blaine Hoshizaki are reconstructing a hit similar to Crosby's first one to establish the relationship between helmet performance and how concussions occur. That nylon stocking, however out of place it seems, makes sliding a helmet on and off the sticky urethane and aluminum head form easier.

Guided by a laser, they position the dummy inside a Plexiglas cage so that a thick metal rod with a hard, white plastic nib is aimed at its left side -- precisely the spot where the cold shoulder of David Steckel of the Washington Capitals hit Crosby during a game on New Year's Day. Everyone nearby in the hangar-like space puts on heavy-duty earphones and steps behind yellow and black danger tape on the floor. With one press of a red button, a calculated reconstruction of the hit similar to the now infamous Crosby-Steckel one is under way.

Beep! Beep! Beep! A shrill, pulsating tone precedes a bursting whoosh as an air compressor drives the rod into the head form at the exact same speed (27 km/h) and angle as when Steckel's 217-lb. body collided with Crosby's head. The crash hurls the head form along a monorail track while it flops back and forth on a dummy neck. However hard the hit looked on the ice, seeing it in the isolation of the lab is disturbing -- much like the unsettling feeling one gets from watching footage of crash-test dummies flailing in car accident re-enactments. It's the distinct surprise that anyone survives these events.

During the five-millisecond flash of impact, nine sensors inside the head form each pick up data at 20,000 times per second. That generates a 3-D computerized brain model depicting where brain tissue stress has occurred. Tissue stress reflects injury. Whereas a computerized image of an unaffected brain would be coloured all blue, the image representing a head side-swiped like Crosby's shows a rainbow of stress emanating from the left hemisphere -- green, yellow, orange, red, grey. There is hardly any blue on that side of the brain.

To Hoshizaki, director of the lab, the dramatic results are frustratingly similar to what he's discovered in doing thousands of reconstructions of brain injuries, including many NHL and NFL concussions, over the last few years: that no matter what make or model of helmet Crosby was wearing, and no matter how much it met or exceeded safety standards, the current equipment isn't built to protect players specifically from concussions. And, just as troubling, the rules of the game and the way players are managed don't adequately help either. Hoshizaki wants to change that.

He and his team of young scientists who run this lab are in a good position to make that happen. No one else in the world is doing exactly this type and extent of research. To be sure, nowhere else in the world does it matter more than in a country whose undisputed sports hero has gone from bionic golden boy to one more broken pro athlete. Ever since Crosby's last game on Jan. 5, when a crushing check into the boards by Victor Hedman of the Tampa Bay Lightning gave him a concussion that he's still battling, hockey league officials and fans alike have been hand-wringing about how this could have happened to one of the greatest players since Wayne Gretzky -- one who'd been on a 25-game scoring streak, a feat so amazing that it last happened nearly 20 years ago.

Hoshizaki will have plenty of answers when, on Feb. 23, he speaks at the first-ever hockey safety summit devoted solely to concussions. The event has been in the works for almost a year and will be attended by representatives from the NHL, the American Hockey League, Hockey Canada, USA Hockey, as well as the standards organizations and minor and amateur leagues. As part of his presentation, Hoshizaki will be using the brain model from the reconstruction to demonstrate the disconnect that currently exists between what his lab indicates about hits to the head and what actually happens on the ice.

The summit will be hosted by Reebok-CCM, which has a $10-million deal with Crosby, the richest endorsement in NHL history. That this hockey icon is currently out of the game, says Olivier Camet, the company's senior product manager, "makes it even more clear that we need to take this seriously and do everything we can to prevent concussions in the future." The summit is all the more pressing given the recent admission by Crosby that he might not be back for the rest of the season because of the brain injury. "That could happen," he conceded uncomfortably. "Am I sitting here packing it in? No, I hope I'm back, and geez, I hope I play this year. But that is the thing, you don't know. There's no time frame."